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Abstract. A differential formulation of the dynamic renormalisation group in  the large-n 
limit is presented for the time-dependent generalisation of the n-vector classical model 
with purely relaxational dynamics, for both conserved and non-conserved order parameter. 
A discussion of the dynamical properties with the same steps used in the traditional 
perturbative approaches is made in terms of which known and new explicit results are 
obtained. Furthermore, a mechanical analogy is introduced which may give new informa- 
tion about the structure of the dynamic renormalisation group in the large-n limit. This 
relies on the possibility of using the wel! known geometrical and mathematical techniques 
from the Hamilton-Jacobi theory for classical mechanics. 

1. Introduction 

It is well established (Nicoll et a1 1975, 1976, Nicoll and Chang 1978, Nelson 1975, 
Rudnik and Nelson 1976) that differential formulations of the renormalisation group 
(RG)  are far more convenient and efficient to apply than the finite recursion relation 
approaches. This is especially the case when one manipulates over large domains of 
the variables involved and when a nonlinear study of the RG properties is made (Nicoll 
et a1 1975). With this in mind, we have recently given a differential formulation of 
the static RG ( S R G )  in the large-n limit for the n-vector classical model (Busiello et 
a1 1981, referred to hereafter as I) and for a wide class of quantum systems (Busiello 
et a1 1983, referred to hereafter as 11). In  any case, it comes out that the SRG in the 
large-n limit is specified by a first-order ‘quasi-linear’ partial differential equation. 
Due to the possibility of using the many powerfu! techniques familiar from the general 
theory of partial differential equations (Courant and Hilbert 1962, Garabedian 1964), 
several advantages with respect to the original approach (Ma 1973, 1974; see also 
11) appear: 

( i )  the RG equation can be solved for general rescaling parameter b ; 
( i i )  it becomes simpler to investigate the possibility of multiple solutions, a question 

already raised by Ma (1974); 
( i i i )  i t  becomes possible to test directly the validity of the expansions in inverse 

powers of b used in the original finite recursion relation formulation; 
(iv) the standard steps involved in the differential perturbative approach (Ma 1976, 

Pfeuty and Toulouse 1977, Patashinskii and Prokovski 1979) can be used for studying 
the critical behaviour in a more natural way; 

( V I  new explicit results can be obtained. 
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Thus, from our investigation (see I and 11) it clearly emerges that the proposed 
differential formulation can be conveniently utilised in clarifying some still open 
questions (Ma 1974) on the structure of the SRG in the large-n limit. On these grounds, 
it becomes also of methodological interest to extend to dynamics the scheme already 
developed for statics. 

In  this paper we present a differential formulation of the dynamic RG (DRG) in 
the large-n limit for the time-dependent generalisation of the n-vector classical model 
with purely relaxational dynamics, both for conserved and non-conserved order 
parameter. This is realised starting from finite recursion relations recently obtained 
by Szepfalusy and TCl (1980a, b) with the use of a Wilson-type RG transformation. 
Furthermore, some peculiar aspects of the RG differential equations are pointed out 
which allow us to develop an interesting mechanical analogy and to introduce an 
alternative geometrical picture for both the DRG and SRG in the large-n limit. Such 
an eventuality may be, in our opinion, particularly relevant for obtaining a more 
intuitive insight about the structure of the DRG, the general features of which are at 
present less understood than those of the static one. 

The paper is organised as follows. In § 2, after an outline of the essential aspects 
of the Szepfalusy and TCl (ST) treatment which are relevant for us, we introduce the 
mentioned DRG differential formulation. A discussion of the differential RG equations 
is made in S; 3. Section 4 is devoted to presenting the analogy between Hamiltonian 
classical mechanics and the DRG in the large-n limit. Finally, in § 5, some conclusions 
are drawn. 

2. Differential DRG equations for local coupling parameters 

We consider the time generalisation of an n-vector d-dimensional classical model 
whose effective Hamiltonian is 

where q5 = {dm ; a = 1, . . , , n }  denotes the n-component order parameter with wavevec- 
tor cut-off assumed equal to unity and V(4’) is a power series of q5’, conveniently 
expressed as 

The evolution of the time-dependent order parameter q5 (x, r )  in the purely relaxational 
case is governed by the Langevin-type equation (Ma 1976, Hohenberg and Halperin 
1977) 

a+af a7 = -L 8x1 8& + L~ (a = 1,. . . , n )  (3) 

where J(x ,  r )  ={Ja(x ,  7); a = 1, . . . , n} is a Gaussian white noise and L = r0(iV)‘ (c = 
0,2) .  Here To is a real constant, conveniently assumed equal to unity, and c = 0 (c = 2) 
corresponds to a ‘non-conserved’ (‘conserved’) order parameter. The stochastic pro- 
cess (3) can be described equivalently (Machlup and Onsager 1953, Onsager and 
Machlup 1953, Graham 1973, Janssen 1976, Bausch et a1 1976, De Dominicis and 
Peliti 1978) in terms of the path probabilityfunctional P { ~ ( x ,  .r)}OcJ 9[&] exp &{& 4}, 
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where d{& 4 }  is an appropriate ‘action’ and 4(x, T )  is an n-vector ‘response field’ 
conjugate to 4 (Martin er a1 1973). 

In the ST formulation of the DRG in the large-n limit, the initial ‘large-n action’ 
is of the form (SzCpfalusy and TCl 1980b) 

where 

After the Wilson RG transformation, defined by integrating the weight functional 
exp d{&, q j }  over field variables with wavevectors in the shell (b-’, 1) and by rescaling 
of the remaining fields, an infinite number of new coupling parameters arises in the 
renormalised action. It has been shown (Szepfalusy and Ti l  1979, 1980a) that the 
full parameter space for the dynamics is spanned by two distinct sets of coupling 
parameters generated by the RG transformation. 

(a) ‘Local’ couplings (not dependent on the variables x and T )  contained only in 
a part of the general action. By using the simplifying features of the large-n limit as 
in the Ma approach for statics, it is found, not perturbatively, that they transform 
among themselves. Thus, in the large-n limit, the local coupling parameters form an 
invariant subspace (the local parameter space) of the full dynamic parameter space. 

(b) ‘Non-local’ couplings whose dependence on x and T ,  generated by the RG 
transformation, can be investigated only perturbatively (SzCpfalusy and TCl 1980a). 
In this paper we refer only to the local parameter space which contains an infinite 
number of static and dynamic coupling parameters and is rich enough to exhibit also 
higher-order critical points (SzCpfalusy and Tel 1980a, b). The key point of the ST 
investigation is that the local parameter space for the model under study in the 
disordered phase is spanned for large n by an action (part of a more general action) 
of the form 

Initially Y(d2, c p )  = (p t (q52) ,  but in general, after the RG transformation, it is a function 
of two variables, which cannot be factorised any more, with the restriction 

Y(4’, 0) = Y(N,, 0) =constant, N, = fn&/(d - 21, (6) 

as required by ‘causality’ (Bausch et a1 1976). The dynamical (local) coupling para- 
meters are defined by the double power series 

where u2m,2u = O(n’-”) for all v and the sum over v starts with v = 1 because, due 
to (6 ) ,  Y(4’,0) is not regarded as a parameter and it is chosen to be zero at the 
beginning. The coupling parameters for v = 1 result just the same as in (2) and 
characterise the statics. All the local coupling parameters are specified by the function 
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~ ~ , ~ ( 4 ’ ,  ~ p )  =aY(4’ ,  cp)/acp. However, the partial derivative Y1,0(4~,  cp) = 
aY(4’,  cp)/a4’, with the restriction Yl,o(42, O ) = O ,  also enters the problem since the 
DRG transformation for local parameters inevitably couples Yo,, to Y1.0. This is 
defined, for d > 2, by the finite recursion relations (SzCpfalusy and TB1 1980b) 

(8) 
Y b , i ( d ~ ~ ,  c p ) = b 2 Y o , i [ b 2 - d Q ( ~ 2 , ~ ) + ~ c ,  b-(d+c)R(42,  q)I, 

Y ; , ~  (42 ,  cp) = b 4 + c ~ l , o [ ~ 2 - d ~ ( ~ 2 ,  c p ) + ~ ~ ,  b - ( d + c ) ~ ( 4 2 ,  cp)I, 
where 

2 ={kC[k2f  Yb,, (d2, cp)]2-2Y;,o(c$2, q)}? 

Note that, at cp = 0, the DRG equations (8), with the identification Yo,I(c$’, 0) = t(4’1, 
reduce to the static ones (Ma 1973) and describe therefore the KG transformation of 
the static coupling parameters {uz,,,.~}. 

We are now in a position to give the differential version of the finite DRG recursion 
relations (8). If we define the infinitesimal RG process B6r by writing b = esr = 1 +61, 
S l  << 1, from (9), to leading order in SI, we obtain 

By inserting (10) in (8) and by isolating only terms to leading order in 8Z, it is 
straightforward to show that the iteration of gsr generates a continuous sequence of 
quantities 

flu, G ~ ,  e )  = [ ~ ~ , ~ ( l ,  4’, c p ) ~ ~ ~ = ~  11,2 9 

ip = [ ( d  ~ 2 ) l ( d + c ) l N , B  

obeying the system of two ‘quasi-linear’ first-order partial equations 

at, at. at, 
- + (d - 2)(G2 -F) + + ( d  + c ) ( e  - a)  - = a,t, ai a* ae ( i =  1,2)  (12) 

where I is a parameter describing the progress of renormalisation averaging, a l  = 2, 
U 2  = (4 +C), 

F(tl, t 2 )  = [ ( I +  t:) - 2r2]--1’2, G(r1, t z )  = 1 - (1 +tl)F(fl, t 2 ) ,  (13) 

and we have introduced, for convenience, the new fields G2=q5’/NC, e =  
[ (d  + c ) / ( d  - 2)ldNC. 



On the dynamic renonnalisation group 1959 

The system of equations (12), which has to be solved with the initial conditions 

ti(o, +’, e) =- tio)(+’, e) 

constitutes the differential formulation of the DRG for an n-vector relaxational model 
in the large-n limit. Since, from (7), t2(l, t,b2, 0) = 0, it is immediately seen that the 
system (12) for 8 = 0 and with t l ( l ,  +’, 0) =t(l ,  +’) = [dU(l, 42)/t342]6~,NcQ~ reduces 
to the single SRG equation 

(15) at/ai + (d  - 2)[+’- i/(i + r ) ]  at/a+’ = 2t 

derived and discussed in I. Thus, with the differential formulation (12), many aspects 
of the dynamics and statics in the large-n limit can be analysed in a unified way. This 
will be realised in the next sections. 

3. Dynamical fixed points, critical surface and stability 

The properties of the DRG in the large-n limit can now be discussed with the same 
steps used in the more traditional RG perturbative approach. The fixed points 
{t?(+’,  8)) of the differential DRG transformation (12), which are defined by the 
invariance conditions at?/al= 0 (i = 1,2) ,  are determined as solutions of the system 
of partial equations 

(d - 2)(+’ -F*) at*/a+’ + (d +c)(e - G*) at:/ae = air: (i = 1 ,2 )  (16) 

whereF*=F(tT, tT)andG*= G(tT, t t ) .  Itisevident thataGaussiansolution{t? =O} 
(i.e. Y*(C$’, c p )  = 0 in the ‘fixed point action’) exists for any d > 2. For the non-trivial 
fixed points, as already discussed in I and I1 for the statics, we must distinguish between 
‘physical fixed points’, which preserve the analyticity properties of the original action, 
and ‘mathematical fixed points’. By inspection of (16), it is immediately seen that any 
non-trivial fixed solution with (ar?/at,),,=1,,,=0 < 00 (i, j = 1,2)  where 51 = 4’ and& = 8, 
satisfies the relations 

rT(l ,O)=t*( l )=O, rT(l,O)=O. (17) 

Furthermore, we must have also 

f T  M2, 0) = r*(+z), G MZ, 0) = 0, (18) 

where r*(+’) is the non-trivial fixed solution of the static equation obtained from (15) 
with at*/ai = 0 (see I). Of course, the singular point (4’ = 1, 6 = 0, t :  = 0 (i  = 1,2)) 
in the space {+’, 8, t l ,  t2}  assumes a role similar to that of the point (+’ = 1, t* = 0) in 
the plane (JI’, t*) of the static case. A study of the system (16), made on the basis 
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of known general techniques (Courant and Hilbert 1962), gives rise to a non-trivial 
physical fixed solution in a very complicated implicit form, in agreement with the ST 
results. 

However, an advantage of the present differential formulation, with respect to the 
finite recursion relation approach, is the possibility to obtain for it an ‘explicit’ 
representation. This can be realised taking into account the relations (17), (18) and 
assuming for Y*(q52, cp) the double Taylor series expansion 

By definition, it results that 

* (2 )  with ak!!,,zY = U Z ~ , ~ ~  = V U ~ ~ , Z J V ~ - ~  [(d -2)/(d +c)]”-’ and a2m,2u = [ (m - v) /v]  
X [ (d  -2)/(d + C ) ] U Z ~ . Z ~ .  The unknown quantities aZm,2v (and therefore ~ 2 * ~ , ~ ~  in (19)) 
can now be determined by integrating for series the system (16). For instance, for 
{ u ~ ~ , ~ ;  m 2 1) and {azm,4; m 2 2) we obtain the recursion relations 

a22 = 0, a4.2 = (4 -d)/(d - 2), 

where 

for k = 1, for k = 1, 
for k 2 2, P& =(! a2k,2 for k 3 2, a2(k-1) ,2  +a2&,2 

Y k  = [ 2 ( k  (23) 
I’ 6 2 k , 2  = 

Analogous relations can be written for a2m.6, U Z ~ , ~ ,  . . . , etc. The successive step for 
establishing the stability of the physical fixed points and the critical surface can now 
be realised by a linearisation procedure of the system (12) close to each fixed point. 

Very close to a generic fixed point {t?}, the system of ‘quasi-linear’ partial equations 
(12) reduces to the ‘linear’ one 

.%(/, $’, e )  = M ~ ( 1 ,  $’, e) (24) 
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with the initial condition ~ ( 0 ,  $’, 8 )  = e) ,  where 

07 (i = 1,2)  ae 

(aij = Kronecker delta). For the Gaussian. fixed point, in (24)  one has ~i ti (i = 1,2),  

integration with the method of characteristics, the solution of the system (24) ,  for 
I >> 1, assumes the form 

A*=(d-2)($’-1), B * = ( d + c ) B ,  C : = 2 ,  DT=O, CT=O, D : = ~ + c .  Thus, by 

with 

fi:-v,v)(i, 0 )  = [a”tl”(x, y ) / a x m - ”  (i = 1 , 2 )  
and 

( m a 0 , O s v s m )  

( m z 1 , l s v s m )  

- (s’ 
m.v - A m  - v ( ~ + c )  

(28) A (2) 
m,y = A + (2  + c )  

where A $) = 2(m + 1) - md (m a 0) are the static Gaussian exponents already obtained 
in I. As we see, since A:!&=Ab“’=2, the condition f o & ( l , O ) = t ~ o ’ ( l , O ) = t ‘ O ’ ( l ) = O ,  
which is just the well known criticality condition from the statics, specifies the ‘critical 
surface’ in the local parameter space. On this we have lim,+m t i ( ( ,  $2, 0 )  = t? ($’, 6 )  = 0 
(i = 1,2)  for dimensionalities d > 4  for which it results that 

A x,’, C 0 for m z l , O s v s m ,  

A“’ m.u CO f o r m s 1 , l s v s m .  

Thus, the trivial fixed point is stable for d > 4 and correspondingly we have a Gaussian 
behaviour with critical exponents q = 0, z = 2 + c,  v = l / A  b!b = l / A  b“’ = 4, . . . , etc, 
where z is the dynamical critical exponent. 

In order to investigate the properties associated with the non-trivial physical fixed 
point, it is sufficient and simple enough to limit ourselves to the expressions 
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obtained from (20)-(23) to leading order in (IL2 - 1) and 8, for which the quantities 
(26) become 

G Busiello, L De Cesare and I Rabuffo 

B* = (4 + c )e, (d  - 2)(4 - d )2 
8, 2(d + c )  

A* = 2(+b2- 1)- 

2(4 -d)2 cT 3 8, 
2(4 - d)’ 3(4 -d)2 

d + c  c: =(d-2)+  (IL2- ’)- d + c  8, d - 2  

(4 -d)’ +(4 - d)’(d - 5 )  
2 (d - 2) 

(4 -d)2[(d - 5 ) 2  - 31 
6, (”-’)+ 2(d+c)  

DT =- 

e. 2(4 -d)’ (4 - d)’(d - 5 )  
0: = ( d + c ) +  (IL2-1)+ d + c  d+c  

In this case, the system (24) can be integrated and, taking into account that tdl ,  IL2, 0) SS 

0, we find, for 1 >> 1, 

T1(l, CL’, e )  =e(d-2)lfl(42, e)T\O’ (1 ,0 )+e(~-~) l f~ (+~,  e)+e(d-6-c)lf3($2, e), 

where 
(4 - d ) 2  3(4-d)2[(4-d)2-4] 

6, 
2 

(IL2-’)+ 4(d +c)(4+c)  d - 2  flcs ,e)=i+--  

T\”(1, o))(g2- 1) 

(4 - d)2  d - 2  (0) 2(4 - d)‘ 
+ - ( T i y ~ , l , ~ ,  2(2 + c )  o ) + - - - - T ~ ~ ~ , O ) U ,  d + c  0)- + c  

(d - 2)(4 - d ) 2  (4 - d)2 
4 : , 0 ,  (1 9 0) - m T : : b , l )  (1 , 0) 

(3(2 + c ) + -- (10 + c ))7:y:,o) (1, O ) ]  6. 
(4 -d)’ (4 -d)2 + 

(d+c)(2+c)(4+c)  4 
i + j  (0) In (32), (331, r\:;,j)(l, 0) =[a 71 (x, Y ) l a x i  ~ Y ~ I ~ = ~ , ~ = O  and r ? & , ~ ) ( l , O )  = [ ~ T ; : ’ ( x ,  y > l  

~ ~ Y ] ~ = I , ~ = O .  From (32) we see that on the critical surface ~ ! ~ ’ ( 1 , 0 )  = r io ’ (1 ,O) -  
t T ( l , O )  = t‘”(1) = 0 we have that { t i ( I ,  i,b2, 6 )  +r+m{tT ($’, e) }  only for d <4. This 
implies that the non-Gaussian fixed point is stable only for 2 < d < 4 and the corre- 
sponding critical exponents are of the spherical model type with 7 = 0, z = 2 +cI 
v = l / ( d - 2 ) ,  Al=(d-2),  hz=(d-4) ,  A3=(d-6-c),  . . . .  Thus, in the present 
differential formulation, all the ST results (together with the static ones) can be simply 
reproduced in a more natural way and new explicit results can also be obtained. 
Studies concerning the global flux in the local parameter space and crossover 
phenomena require a careful analysis of the RG equations (12) beyond the linear 
region. However, a direct investigation of the global RG solution is a difficult topic 
even if, at least in principle, it can be realised by the use of the well known techniques 
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developed for systems of quasi-linear first-order partial equations. Nevertheless, as 
we shall see in the next section, due to the peculiar structure of the DRG equations, 
it is possible to obtain additional insights on the global nature of the RG in the large-n 
limit with an alternative and probably more convenient proaedure. 

4. Mechanical analogy: a proposal 

By inspection of equations (12) and also of the fixed point equations (16) a very 
peculiar structure appears: the coefficients of the corresponding derivatives are iden- 
tical. Thus, they constitute a system of equations with the ‘same principal part’ whose 
properties are well established (Courant and Hilbert 1952). This surprising characteris- 
tic of the DRG transformation in the large n-limit, which emerges clearly only in the 
differential formulation, gives the possibility to introduce a new interesting way to 
approach the dynamic (and the static) problem. 

We firstly observe that, from a known theory (Courant and Hilbert 1962), valid 
only for such a special category of systems of first-order partial equations, the system 
(12) is equivalent to the single homogeneous linear partial equation 

for a function Y(1, I,!I’, 8; t l ,  f 2 ) ,  which does not appear explicitly, of the five independent 
variables I, 4*, 8, t l ,  t 2 .  When two ‘independent’ solutions 9, ( i  = 1, 2) of (34) are 
known, a solution { t l ;  i = 1,2} of the system (12) can be obtained by solving the 
algebraic system Yt = c, where c, ( i  = 1,2)  are two arbitrary constants. Of course, the 
fixed point system of equations (16) is equivalent to the single partial equation which 
is obtained from (34) by using the condition aY*/al= 0, where Y* = sP*($2, 8, t ? ,  t ? ) ,  
with Y*(l, 0, 0, 0) = 0, assume the role of a fixed solution of the new DRG equation (34). 

Then if we put for convenience q1= IL2, qi = t l ,  q3 = 8, q4 = tZ ,  p ,  = aY/aq, ( j  = 
1, . . . ,4) and introduce the function, not depending explicitly on the parameter I, 

4 

j = 1  
xe(b?,>; b,}) = 1 a&,p, -[ffiF(q2, q4)pi +ff3G(q2, q4)p3] (35) 

with 

a l = d - 2 ,  ff2=2, a 3 = d + c ,  a 4 = 4 + c ,  (36)  

the equation (34) for Y(1, {q,}) can be rewritten as 

ay/ai  + x({q,); {asp/aq,}) = 0. (37) 

The corresponding equations of characteristics assume the form 

dqi/dl = aX/apj  
( / =  1, .  . . , 4 )  

dpi/di = -ax/aqi 

and the integration of the original system of quasi-linear partial equations (12) is 
equivalent to integration of the system or ordinary equations (38).  

The results (35)-(38) provide the key for developing the mentioned alternative 
procedure to investigate the properties of the DRG in the large-n limit from a new 
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point of view. It is evident that (37)-(38) have a structure typical of the Hamilton- 
Jacobi equation and of Hamilton’s canonical equations of motion in classical 
mechanics, respectively. Then, an interesting analogy between classical mechanics 
and the DRG in the large-n limit clearly emerges. Indeed, if one looks on the RG 

parameter I as a ‘time-like’ variable, Y(1, {e}) can be regarded as the ‘action’ of an 
‘equivalent mechanical system’ whose ‘Hamiltonian’ X, defined by (35) in terms of 
the generalised coordinates {e} and the conjugate momenta { p i } ,  does not depend 
explicitly on the ‘time’ 1. With this mechanical analogy, the original problem of the 
flux in the local parameter space, under iteration of the DRG transformation, can be 
sought as equivalent to the ‘time evolution’, in the eight-dimensional ‘phase space’ 
0 = ({qi}, { p i } )  of the representative points of the mechanical system described by the 
equations of motion (38). Of course, since it results that aX/al= dZ/d l  = 0, the 
‘constant of motion’ X is a quantity ‘invariant’ under iteration of the DRG transforma- 
tion. Note that, if we put q3 = q4 = 0, q2 = i and 

YP(L 41, 92,0,0)  = S(1, {4il), 
(39) 

with pi = aS/aqi ( i  = 1,2) ,  equations (34)-(38) reduce just to the corresponding ones 
for the SRG equation (15). Thus, the mechanical analogy is true also for the statics 
for which the four-dimensional ‘phase space’ r=  ( {q i } ;  {pi}) is an invariant subspace 
of the dynamical phase space 0 and the ‘Hamiltonian’ H is a ‘constant of motion’. 

Note that the ‘mechanical Hamiltonians’ 2 and H have not the typical structure 
of usual mechanical systems and as ‘constant of motion’ cannot be immediately 
interpreted as mechanical energies. Furthermore, their non-analytical character 
reflects the highly nonlinear nature of the RG transformation in the large-n limit. In 
any case, as in classical mechanics, we can separate the ‘action’ Y(1, {qi}) (or S(1, {qi}) 
in the static case) in two parts, one involving {qi} only and the other only the ‘time’ I :  

no longer involving the ‘time’, where K is the (arbitrary) constant value of Z({qj}; { p i } ) .  
In the present mechanical analogy, the function .Y0({qi}) assumes the role of ‘Hamilton’s 
characteristic function’ (the ‘reduced action’) and, therefore, it generates a canonical 
transformation in which all the new generalised coordinates are ‘cyclic’ (Goldstein 
1972). 

Note that the fixed action Y* corresponds just to the reduced action when the 
value K = 0 is assumed for the constant of motion X. With the new point of view 
exposed above, one is now in a position to explore the DRG (and SRG) properties in 
the large-n limit by using the powerful geometrical and mathematical techniques from 
the Hamilton-Jacobi theory for classical mechanics (Courant and Hilbert 1962, Stanley 
1977, Abraham and Mardsen 1978). Particularly suggestive is the possibility to 
investigate the nature of the flux in the original parameter space by studying the 
evolution of the waves of action in the configurational space {qi} with steps very similar 
to those used for developing the analogy between classical mechanics and geometrical 
optics (Goldstein 1972, Arnold 1978). 
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5. Conclusions 

On the basis of the results obtained in the previous sections for the dynamics and in 
I and I1 for the statics, we think that the proposed differential formulation can be 
convenient for an advantageous and unified investigation of both the static and dynamic 
RG properties in the large-n limit. The differential RG equations are, in any case, far 
simpler and amenable to more analytic solution techniques than the corresponding 
finite recursion ones. In this scheme many difficulties are circumvented and, apart 
from the advantages indicated in § 1, we have the concrete possibility to obtain also 
global results in an explicit form by using less artificial procedures. Furthermore, the 
structure of the RG in the large-n limit and the strict connection between the statics 
and the dynamics become more transparent. As regards the mechanical analogy, it 
may be very usefully utilised for developing an intuitive geometric picture about the 
nature of the global flux in the parameter space which can give new insights on the 
RG approach. Note that similar geometric descriptions, based on the general theory 
of partial differential equations, have been already successfully used in other topics 
of statistical mechanics (Fisher 1977, Fisher and Au-Yang 1979, Stilck and Salinas 
1981, Gartenhaus 1981). 

Finally, we wish to point out that the main purpose of § 4 is only to present a new 
point of view for exploring the RG properties in the large-n limit. A detailed investiga- 
tion of its implications, based on the Hamilton-Jacobi theory, is under study and we 
hope to present other aspects of the problem in a future work. 
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